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Physics at /s ~ my(—200GeV) has proven to be
very fruitful in the past:

e Electroweak precision tests can probe physics at
high scales and can test the consistency of the
tavourite model at the loop level.

e The Z-pole is a rich source for some particles
(B,D,7) with distinct advantages to lower energy
machines.

It 1s therefore worth to study what we can learn from
a much increased integrated luminosity in the light
of the competition from TEVATRON run II, LHC
and the B-factories

This talk tries to point out the possibilities of a linear
collider and is necessarily on the optimistic side. It
is meant to motivate further work on the subject.
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The talk is based on the following assumptions:

e > 10 recorded Z-decays
[ ~ 50 — 100 days at £ =5 - 1033cm ™25}
[] a Z-rate of ~ 100 — 200Hz
e high polarisation of the electron beam (> 80%)

e very high precision on polarimetry (O(0.1% —
0.5%)) and/or positron polarisation (> 20%)

GigaZ running modes
e NLC scheme

— e~ -beam independent positron source
— can start early with GigaZ and upgrade to high
energy later
e TESLA scheme

— positron source using high energy e~ beam

—use one part of the machine for 45 GeV beam
and the other part for positron production

— start with physics at high energy and come back
to the Z later
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Which luminosity can be reached?

NLC TESLA
norm |low dp
L£(10%) | 41 | 2 5
5g(%) | 016 005 0.1
APrp (%)*] 0.07 | 0.02 0.1

(* for spent beam, for colliding particles ~ factor
four smaller)

Which statistics can be reached?

e Total cross section o = gy (1 + P+P,-)
(0y &~ 30nb)

e With £ =5-103cm ™%~ 1;
— ~ 50 days for 10? Zs with P, /P, = 0.8/0.6
— ~ 80 days for 10” Zs with P4+ =0

= 10 Zs should be possible within the normal LC
running budget

= 101V Zs can be produced with a dedicated facility
in 3-5 years (150 days/year)
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Interesting quantities:

e normalisation of axial-vector coupling of Z — £/

e effective weak mixing angle from ratio of vector
to axial vector coupling of Z — £¢:

e mass of the W:

e strong coupling constant from the Z hadronic de-
cay rate:

e vertex correction to Zbb vertex:

Apf? Qg (m%>

Minimally correlated observables:

my,
'z
o = g
r 7 YA
_ Lhad
Rf Fl

= Need to scan

= Need absolute cross sections
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Assumptions:

e relative beam energy error around Z-pole: 1072
= Al'y/Ty =0.4-1073
(Need to understand the beam energy measure-
ment and the systematics due to beamstrahlung
and beamspread )

e selection efficiency for us, 7s, hadrons (and exp
error on L) improved by a factor three relative to
the best LEP experiment
= AR;/R;=03-1073

e theoretical error on luminosity stays at 0.05%
= Acjad/gf2d = 0.6. 1073
(again if beamspread /-strahlung understood)

Improvement on lineshape related quantities:

LEP GigaZ
my | 91.1874 % 0.0021 GeV | £0.0021 GeV
as(m?)|  0.1183 £ 0.0027 +0.0009
Ap | (0.55+0.10)- 1072 | £0.05- 1072
N, 2.984 + 0.008 +0.004
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Most sensitive observable is Ay g, so only this is dis-
cussed
1 O-L - O-R 27}6&6

=Ae = 12 2
Por+og ve + ag

ve/ae = 1 — 4sin’ 8%

AR =

independent of the final state

Statistical error with 107 Zs: AA;p =4 - 107
(for P— = 80%, P+ =0)

Crucial ingredient: polarisation measurement

Error from polarisation: AA;r/A;jr = AP/P

e only electron polarisation with AP/P = 0.5%
= AAjp =8- 10~4
(Still factor three to SLD, but few million Zs are
sufficient)

e with positron polarisation P.g = 1717@177);__

= gain a factor four for P, /P+ — 80% /60%
due to error propagation

(even when error is 100% correlated between the
polarimeters the gain is a factor three)
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Arp = (044 +toy—0r_—o__)(-04s+o_y —04_+0__)
(64r+o—y+oi_+o__)(—04y+0o_r+04_—0__)

can measure Apr independent from polarimeters
with very small loss in precision and only 10% of
the luminosity on the small cross sections

AA;R as a function of the e™ polarisation
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For 107 Zs already 20% positron polarisation is bet-
ter than a 0.1% polarimeter!
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Crucial problem for Blondel scheme: Ditterence ot
absolute values of helicity states.

For P = =|P| + 0P: dAr/ddP = 0.5 for e~ and
et separately

= understand polarisation difference to < 1074

Many effects can be treated with a polarimeter with
several channels with different analysing power

— control of the laser-polarisation difference

— control of asymmetric backgrounds

Further issue: polarisation correlation effects (e.g.
correlated time dependencies, depolarisation effects
in the interaction region, transverse dispersion ef-
fects)

Order of magnitude estimate:

o change AP /P by £1% for e™ and e~ simultane-
ously for half of the luminosity

= AALR = 0.7 - 10_5
e Effect goes quadratic with AP /P

e Seems not to be a big problem
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Other systematics

o Beam energy: dAjp/dy/s = 21072/ GeV from
v — Z-interference
= need Ay/s ~ 1 MeV relative to my

e Beamstrahlung: AAjp = 9-107* (TESLA)
= need to know beamstrahlung to a few %
However if beamstrahlung is the same in my-scan
and ApR-running corrections are automatic

o (Energy spread is not relevant for Ap g since slope
is linear)

e Other systematics should be small
In total AArpr = 1074 = Asin?fle = 0.000013

seems a realistic estimate
Factor 13 to LEP/SLD
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b-quark observables

® Rbi
[ factor five to LEP/SLD due to better b-tagging
and higher statistics
o .Abi
[J factor 15 to LEP/SLD due to higher statistics,
beam polarisation and b-tagging

[1 If the slight discrepancy currently seen at
LEP/SLD is real it cannot escape GigaZ

20.94
<
68% c.l. —— LEP/SLD
- — Giga-Z
0.92 - 5
09 ]
0.88 - |
] ] ] | ] ] ] | ] ] ] | ] ] ]
0.215 0.216 0.217 0.218 0.219
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Threshold scan:

e Near threshold W-pair production is dominated
by neutrino t-channel exchange
= (B-suppression gives high sensitivity to myy
= no (unknown) triple gauge couplings involved

e A six point scan around /s = 161 GeV has been
simulated with £ = 100fb~1 (one year!!!)
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e Efficiencies/purities assumed as at LEP

e Polarisations used to measure background/ en-
hance signal

—need AP /P < 0.25%
—can use Blondel scheme on rad. ret. events if
positron polarisation is available

— A{{{(IGO) GeV large, rapidly changing with /s
and different for up- and down-type quarks
= need to understand left-right asymmetry for
selected background very well

[0 Amyy = 6 MeV possible with 0.25% error on lu-
minosity and efliciencies
e error increases only to 7 MeV if efficiencies are fit-
ted

[1 Factor 2-3 better than LHC
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Parametric errors

e largest effect: Running of «

— Using data only (including the latest BES re-
sults):
Asin?0te = 0.00014, Amyy = 7 MeV
— ~ factor three improvement using perturbative
QCD at low energy
—with o(eTe”—had) below the T to 1%
Asin?0te = 0.000017, Amyy < 1 MeV
e 2 MeV error on my gives
Asin?0le = 0.000014, Amyy = 1 MeV
(if W-mass calibrated to my)
e Ami = 1 GeV gives
Asin?fg = 0.00003, Amyy = 6 MeV
= no problem with LC precision of my (<
200 MeV))

(sin26%g is at its limit from Aa(my) and Amy!)
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Within SIM my can be predicted to 570 from preci-
sion data

my,

Within the MSSM the data can be used to measure
model parameters
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Model mmdependent analysis (¢, o1 parameters)
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e dramatic improvement in my direction

e improvement perpendicular to my largely due to
myy

e significant Higgs constraint independent of €1 (T)
possible
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E.g. exclusion of a two Higgs doublet model with a
light Higgs

(that cannot be excluded by direct searches)

S,T for U=0 and Ax*.., in No—Discovery Zones
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For these types of exclusions myy is important!
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GigaZ also important for strong electroweak sym-

metry breaking:
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Limits correspond to A* = O(10 TeV) > 3 TeV
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Available statistics: 4 - 103 — 4 - 10Y B-hadrons for
109 — 10!V 7s

Comparison with e”e™-B-factories

e comparable statistics
e large boost allows separation of the two Bs

e large boost gives much better decay length reso-
lution

e also Bg and Ay produced

e large Apg with polarised beams gives very good
initial state charge tagging

Comparison with LHC-b,BTeV

e much lower statistics

e however all Bs are triggered and can be recon-
structed

e much cleaner environment

Up to now no GigaZ specific CP-studies, only repe-
tition of B-factory/LHC-b/etc.
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Primary flavour tagging from B-direction
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eD? ~ 0.6 from B-direction only
Typical at other machines: eD? ~ 0.1 — 0.25

Other methods like vertex charge can strongly im-
prove in central region, however no detailed studies
yet.
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Measure time dependent asymmetries

_ Npo(t) — Npo(?)
A® = N poft) + Nl

= a.cos Amit+assin Amt

mainly two examined decay modes

e BV = J/UKY:

—as = —sin208, a. =0
e BV = ™
—ag = —sin2a, a. = 0 if penguin diagrams can
be ignored

— however ag, a. modified by penguin contribu-
tions, hard to calculate

—can be disentangled by measuring branching ra-
tios B = ntn—, BY = 7979, Bt — 77V

Experimental analysis:

e identify initial state b-charge
e reconstruct decay mode

e measure eigentime to decay
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Final state 1dentification:

e Missing particle ID can be

momentum resolution

replaced by excellent

L with dE/dx
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(Without cut on B-decay angle) Results

sin 203 | “sin 2a”
BaBar/Belle | 0.12 | 0.26
CDF 0.08 | 0.10
BTeV /year 0.03 | 0.02
ATLAS 0.02 | 0.14
LHC-b 0.01 | 0.05
GigaZ (107 Zs)| 0.04 | 0.07

5.4

Interesting cross check with 107 Zs, with 1019 very
competitive
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Branching ratios B? — 7%7Y, Bt — #t 7!

e Competitive results to BaBar with 107 Zs

BsBs-mixing

e “golden” mode: By — Dgm, Ds — om, KK

e proper time res. dominated by vertex res.
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e Amg ~ 40ps~1 possible

e resolution limit around Amg ~ 801)3_1

And further

e Some rare b-decays might be accessible at GigaZ
(e.g. b — svv)

e Tests of quark hadron duality (e.g. Vi in Bg)
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Rare Z decays

e with 10” Zs leptonic FCNC Z-decays like Z —
er, ur are visible on the 1075 level

ec.g. some models with extra neutrinos predict
signals on this level

1073
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—— Dirac ordinary LEP 1 |

1072 r ——— Dirac singlet
. mNZ/le =2
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E— mNz/le =10
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TESLA

10-8 / TESLA* -

1079 | [ =

10710 L

10711 L

10712 L

10—13 1 1 1
1 10 100 1000 10000

my; [GeV]

e also some SUSY models predict measurable sig-
nals

Other possibly interesting fields

T-physics, charm-physics, gluon jets, what else?
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Considered running mode:

o L =75-10Pem % = 2007 /s
Machine characteristics:

e NLC: 180 trains/s with 190 bunches/train and
1.4ns bunch spacing

e TESLA: 5 trains/s with 2800 bunches/train and
340ns bunch spacing

Number of Zs per bunch /train:

NLC-train | TESLA-bunch
07Zs| 0.33 0.986
17 0.37 1.4-102
27s  0.20 9.7-107°
>37s|  0.10 4.5-107

e /. counting should be possible at both machines

e Luminosity/bunch might be enlarged if more
beamstrahlung is tolerated
(Not for electroweak physics!)

e Need detailed studies how many Zs/train affect B-
physics specific topics like b-/anti-b-tagging, en-
ergy flow etc.
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Detector:

Electroweak physics:

® sin’ H(gﬂc—measurement needs mainly Z-counting

e for partial widths need also good hermeticity and
energy flow

e b-couplings require very good b-tagging

B-physics:

e 7/K/p-separation certainly helps
e however specialised detectors (RICH) tend to

compromise energy-flow and momentum resolu-
tion
e good mass resolution largely replaces particle-id
e dE/dx has to be available

e 3 high B-field separates particles in jets and im-
proves dE/dx

e excellent vertexing also helps to separate Zs in one
bunch /train
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e With a modest effort a huge gain in the precision
Z-observables is possible

e An improved myy measurement is also possible if
one spends a year for it

e These measurements allow stringent tests of the
then-Standard-Model

e The CP-tests of BaBar/Belle/BTeV /LHC-b can
be cross-checked with 10Y Zs and possibly be
improved with 1010 Zs

e Some new topics in B-physics, rare Z decays etc.
can be studied

e By no means a present design should exclude the
GigaZ option

o A facility with 1010 Zs looks interesting, but needs
further study
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For electroweak physics (107 Zs):

e is e polarisation possible, if yes, how much?

e how well can can we understand polarisation sys-
tematics?

e can we understand Ay/s/my to 107°7

e how well can we understand beamstrahlung and
beamspread?

For B-physics (1010 Zs):

e how many Zs/bunch,train can we accept?

e do we need additional particle id, what can we
sacrifice for it?

e can we go closer to the beam with the vertex de-
tector?
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